EE202

DESIGN OF SYNCHRONOUS COUNTER
USING JK FLIP-FLOP


Once the sequential circuit is defined by the state diagram, the next step is to obtain the next-state table,
Table 15. Activation table
Q        Qn             J     K
 0  -->  0               0     X
 0  -->  1               1     X
 1  -->  0               X    1
 1  -->  1               X    0  
Since there are eight states, the number of flip-flops required would be three. Now we want to implement the counter design using JK flip-flops.

Next step is to develop an excitation table from the state table, which is shown in Table 16.

Table 16. Excitation table


present state   Next state                    flip-flop inputsQ2Q1Q0      Q2Q1Q0        J2  K2         J1  K1   JO KO

 0   0   0         0   0   1            0   X           0  X       1  X
 0   0   1         0   1   0            0   X           1  X       X  1
 0   1   0         0   1   1            0   X           X  0       1  X
 0   1   1         1   0   0            1   X           X  1       X  1
 1   0   0         1   0   1            X  0            0  X       1  X
 1   0   1         1   1   0            X  0            1  X       X  1
 1   1   0         1   1   1            X  0            X  0       1  X
 1   1   1         0   0   0            X  1            X  1       X  1

 Now transfer the JK states of the flip-flop inputs from the excitation table to Karnaugh maps to derive a simplified Boolean expression for each flip-flop input. This is shown in Figure 20.


Figure 20: Karnaugh map



The 1s in the Karnaugh maps of Figure 20 are grouped with "don't cares" and the following expressions for the J and K inputs of each flip-flop are obtained:


J0 = K0 = 1


J1 = K1 = Q0


J2 = K2 = Q1*Q0






DESIGN COUNTER USING T FLIP-FLOP


The state table will be the same as in Example 1.5.


Table : Activation table
Q       Qn       T
 0  -->  0        0
 0  -->  1        1
 1  -->  0        1
 1  -->  1        0

Now derive the excitation table from the state table, which is shown in Table 17.

Table 17. Excitation table.
present state      Next state    flip-flop inputs

Q2Q1Q0          Q2Q1Q0      T2   T1   T0
 0   0   0             0   0   1         0     0     1
 0   0   1             0   1   0         0     1     1
 0   1   0             0   1   1         0     0     1
 0   1   1             1   0   0         1     1     1
 1   0   0             1   0   1         0     0     1
 1   0   1             1   1   0         0     1     1
 1   1   0             1   1   1         0     0     1
 1   1   1             0   0   0         1     1     1

Next step is to transfer the flip-flop input functions to Karnaugh maps to derive a simplified Boolean expressions, which is shown in Figure 23.


Figure 23. Karnaugh maps



The following expressions are obtained:






T0 = 1;                T1 = Q0;                T2 = Q1*Q0

Finally, draw the logic diagram of the circuit from the expressions obtained. The complete logic diagram of the counter is shown in Figure 24.

Figure 24. Logic diagram of 3-bit binary counter.